Last updated: 2019-10-05
Checks: 7 0
Knit directory: ebpmf_demo/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190923)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/ebpmf_demo.Rmd
Untracked: analysis/softmax_experiments.ipynb
Untracked: docs/figure/test.Rmd/
Unstaged changes:
Modified: analysis/ebpmf_rankk_demo.Rmd
Modified: analysis/softmax_experiments.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 9949ac5 | zihao12 | 2019-10-05 | ebpmf_rankk_demo2.Rmd run with pacakage function |
html | ffd2760 | zihao12 | 2019-10-05 | Build site. |
Rmd | c508498 | zihao12 | 2019-10-05 | ebpmf_rankk_demo2.Rmd |
rm(list = ls())
library(ebpm)
library(ebpmf)
library(matrixStats)
library(Matrix)
Warning: package 'Matrix' was built under R version 3.5.2
library(gtools)
library(NNLM)
See detail in https://www.overleaf.com/project/5bd084d90a33772e7a7f99a2
I did a demo of the same model in https://zihao12.github.io/ebpmf_demo/ebpmf_rankk_demo.html\
Instead, here I use efficient algorithm to compute softmax3d
for that step (see https://zihao12.github.io/ebpmf_demo/softmax_experiments.html). It turns out to be much faster (though still 20 times slower than nnmf
).
Now the computational bottleneck becomes the ebpm
algorithm.
## ================== main function ==================================
ebpmf_rankk_exponential <- function(X, K, m = 2, maxiter.out = 10, maxiter.int = 1, seed = 123){
X = as(X, "dgTMatrix") ## triplet representation: i,j, x
set.seed(123)
start = proc.time()
qg = initialize_qg(X, K)
runtime_init = (proc.time() - start)[[3]]
runtime_rank1 = 0
runtime_ez = 0
#print(sprintf("init takes: %f seconds", runtime_init))
for(iter in 1:maxiter.out){
#print(sprintf("iter: %d", iter))
for(k in 1:K){
#print(sprintf("k: %d", k))
## get row & column sum of <Z_ijk>
start = proc.time()
Ez = get_Ez(X, qg, k, K)
runtime_ez = runtime_ez + (proc.time() - start)[[3]]
#print(sprintf("compute Ez takes %f seconds", runtime_ez))
## update q, g
start = proc.time()
tmp = ebpmf_rank1_exponential_helper(Ez$rsum,Ez$csum,NULL,m, maxiter.int)
runtime_rank1 = runtime_rank1 + (proc.time() - start)[[3]]
qg = update_qg(tmp, qg, k)
}
}
print("summary of runtime:")
print(sprintf("init : %f", runtime_init))
print(sprintf("Ez per time: %f", runtime_ez/(iter*K)))
print(sprintf("rank1 per time: %f", runtime_rank1/(iter*K)))
return(qg)
}
## ================== helper functions ==================================
## for each pair of l, f, give them 1/k of the row & col sum
initialize_qg <- function(X, K, seed = 123){
n = nrow(X)
p = ncol(X)
set.seed(seed)
X_rsum = rowSums(X)
X_csum = colSums(X)
prob_r = replicate(n, rdirichlet(1,replicate(K, 1/K)))[1,,] ## K by n
prob_c = replicate(p, rdirichlet(1,replicate(K, 1/K)))[1,,] ## K by p
rsums = matrix(replicate(K*n,0), nrow = K)
csums = matrix(replicate(K*p,0), nrow = K)
for(i in 1:n){
if(X_rsum[i] == 0){rsums[,i] = replicate(K, 0)}
else{rsums[,i] = rmultinom(1, X_rsum[i],prob_r[,i])}
}
for(j in 1:p){
if(X_csum[j] == 0){csums[,j] = replicate(K, 0)}
else{csums[,j] = rmultinom(1, X_csum[j],prob_c[,j])}
}
qg = list(qls_mean = matrix(replicate(n*K, 0), ncol = K), qls_mean_log = matrix(replicate(n*K, 0), ncol = K), gls = replicate(K, list(NaN)),
qfs_mean = matrix(replicate(p*K, 0), ncol = K), qfs_mean_log = matrix(replicate(p*K, 0), ncol = K), gfs = replicate(K, list(NaN))
)
for(k in 1:K){
qg_ = ebpmf_rank1_exponential_helper(rsums[k,], csums[k, ], init = NULL, m = 2, maxiter = 1)
qg = update_qg(qg_, qg, k)
}
return(qg)
}
## compute the row & col sum of <Z_ijk> for a given k
get_Ez <- function(X, qg, k, K){
n = nrow(X)
p = ncol(X)
psi = array(dim = c(n, p, K))
## get <ln l_ik> + <ln f_jk>
for(d in 1:K){
psi[,,d] = outer(qg$qls_mean_log[,d], qg$qfs_mean_log[,d], "+")
}
## do softmax
#browser()
psi = softmax3d(psi)
Ez = as.vector(psi)*as.vector(X)
dim(Ez) = dim(psi)
return(list(rsum = rowSums(Ez[,,k]), csum = colSums(Ez[,,k])))
}
softmax3d <- function(x){
score.exp <- exp(x)
probs <-as.vector(score.exp)/as.vector(rowSums(score.exp,dims=2))
dim(probs) <- dim(x)
return(probs)
}
softmax1d <- function(x){
return(exp(x - logSumExp(x)))
}
update_qg <- function(tmp, qg, k){
qg$qls_mean[,k] = tmp$ql$mean
qg$qls_mean_log[,k] = tmp$ql$mean_log
qg$qfs_mean[,k] = tmp$qf$mean
qg$qfs_mean_log[,k] = tmp$qf$mean_log
qg$gls[[k]] = tmp$gl
qg$gfs[[k]] = tmp$gf
return(qg)
}
ebpmf_rank1_exponential_helper <- function(X_rowsum,X_colsum, init = NULL, m = 2, maxiter = 1){
if(is.null(init)){init = list(mean = runif(length(X_rowsum), 0, 1))}
ql = init
for(i in 1:maxiter){
## update q(f), g(f)
sum_El = sum(ql$mean)
tmp = ebpm::ebpm_exponential_mixture(x = X_colsum, s = replicate(p,sum_El), m = m)
qf = tmp$posterior
gf = tmp$fitted_g
ll_f = tmp$log_likelihood
## update q(l), g(l)
sum_Ef = sum(qf$mean)
tmp = ebpm_exponential_mixture(x = X_rowsum, s = replicate(n,sum_Ef), m = m)
ql = tmp$posterior
gl = tmp$fitted_g
ll_l = tmp$log_likelihood
qg = list(ql = ql, gl = gl, qf = qf, gf = gf, ll_f = ll_f, ll_l = ll_l)
}
return(qg)
}
I simulate all columns of \(L\) from the same exponential mixture, and all columns of \(F\) from another exponential mixture. Then I get \(X_{ij} \sim Pois(\sum_k l_{ik} f_{jk})\) as training, and \(Y_{ij} \sim Pois(\sum_k l_{ik} f_{jk})\) as validation.
In order to get a sparse matrix, I set the rate (scale_b
) for the exponential to be large.
sim_mgamma <- function(dist){
pi = dist$pi
a = dist$a
b = dist$b
idx = which(rmultinom(1,1,pi) == 1)
return(rgamma(1, shape = a[idx], rate = b[idx]))
}
## simulate a poisson mean problem
## to do:
simulate_pm <- function(n, p, dl, df, K,scale_b = 10, seed = 123){
set.seed(seed)
## simulate L
a = replicate(dl,1)
b = 10*runif(dl)
pi <- rdirichlet(1,rep(1/dl, dl))
gl = list(pi = pi, a = a, b= b)
L = matrix(replicate(n*K, sim_mgamma(gl)), ncol = K)
## simulate F
a = replicate(df,1)
b = 10*runif(df)
pi <- rdirichlet(1,rep(1/df, df))
gf = list(pi = pi, a = a, b= b)
F = matrix(replicate(p*K, sim_mgamma(gf)), ncol = K)
## simulate X
lam = L %*% t(F)
X = matrix(rpois(n*p, lam), nrow = n)
Y = matrix(rpois(n*p, lam), nrow = n)
## prepare output
g = list(gl = gl, gf = gf)
out = list(X = X, Y = Y, L = L, F = F, g = g)
return(out)
}
I generate a very sparse, small matrix.
n = 100
p = 200
K = 2
dl = 10
df = 10
scale_b = 5
sim = simulate_pm(n, p, dl, df, K, scale_b = scale_b)
A summary of the simulation:
[1] "nonzero ratio: 0.075400"
[1] "ll train = -4964.163979"
[1] "ll val = -5263.255923"
ebpmf_rankk_exponential
I put the functions above into a function in package ebpmf
.
start = proc.time()
##out_ebpmf = ebpmf_rankk_exponential(sim$X, K, maxiter.out = 100)
out_ebpmf = ebpmf::ebpmf_exponential_mixture(sim$X, K, maxiter.out = 100)
[1] "summary of runtime:"
[1] "init : 0.033000"
[1] "Ez per time: 0.002955"
[1] "rank1 per time: 0.009700"
runtime = proc.time() - start
[1] "runtime: 2.586000 seconds"
[1] "ll train = -4759.116930"
[1] "ll val = -5615.310826"
nnmf
with random initializationstart = proc.time()
out_nmf = nnmf(sim$X, K, loss = "mkl", method = "lee", max.iter = 100, rel.tol = -1)
runtime = proc.time() - start
[1] "runtime: 0.140000 seconds"
[1] "ll train = -4716.149696"
[1] "ll val = -Inf"
nnmf
with initialization from ebpmf resultW0 = out_ebpmf$qls_mean
H0 = t(out_ebpmf$qfs_mean)
start = proc.time()
out_nmf_init = nnmf(sim$X, K,init = list(W0 = W0, H0 = H0), loss = "mkl", method = "lee", max.iter = 100, rel.tol = -1)
runtime = proc.time() - start
[1] "runtime: 0.167000 seconds"
[1] "ll train = -4448.016719"
[1] "ll val = -6670.583905"
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] NNLM_0.4.2 gtools_3.8.1 Matrix_1.2-17
[4] matrixStats_0.54.0 ebpmf_0.1.0 ebpm_0.0.0.9000
loaded via a namespace (and not attached):
[1] Rcpp_1.0.2 knitr_1.25 whisker_0.3-2 magrittr_1.5
[5] workflowr_1.4.0 lattice_0.20-38 stringr_1.4.0 tools_3.5.1
[9] grid_3.5.1 xfun_0.8 git2r_0.25.2 htmltools_0.3.6
[13] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.21 mixsqp_0.1-120
[17] fs_1.3.1 glue_1.3.1 evaluate_0.14 rmarkdown_1.13
[21] stringi_1.4.3 compiler_3.5.1 backports_1.1.5