Last updated: 2019-10-22

Checks: 7 0

Knit directory: ebpmf_demo/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190923) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/ebpmf_demo.Rmd
    Untracked:  analysis/ebpmf_rank1_demo2.Rmd
    Untracked:  analysis/softmax_experiments.ipynb
    Untracked:  data/trash/
    Untracked:  docs/figure/Experiment_ebpmf_rankk.Rmd/
    Untracked:  docs/figure/test.Rmd/
    Untracked:  verbose_log_1571583163.21966.txt
    Untracked:  verbose_log_1571583324.71036.txt
    Untracked:  verbose_log_1571583741.94199.txt
    Untracked:  verbose_log_1571588102.40356.txt

Unstaged changes:
    Modified:   analysis/ebpmf_rank1_demo.Rmd
    Modified:   analysis/ebpmf_rankk_demo.Rmd
    Modified:   analysis/softmax_experiments.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 7814be6 zihao12 2019-10-22 debug point gamma

I managed to find the bug in ebpmf_point_gamma.Now ELBO increases monotonically.

Also noteworthy is the differences in RMSE compared with https://zihao12.github.io/ebpmf_demo/debug_ebpmf_exponential_mixture.html . Note the data generating process is almost the same. I would further compare the two ebpmf methods.

rm(list  = ls())
devtools::load_all("../ebpmf")
Warning: 1 components of `...` were not used.

We detected these problematic arguments:
* `action`

Did you misspecify an argument?
Loading ebpmf
Warning: package 'testthat' was built under R version 3.5.2
set.seed(123)
library(NNLM)
library(ebpmf)

simulate_data <- function(n, p, K, params, seed = 1234){
  set.seed(seed)
  L = matrix(rgamma(n = n*K, shape = params$al, rate = params$bl), ncol = K)
  F = matrix(rgamma(n = p*K, shape = params$af, rate = params$bf), ncol = K)
  Lam =  L %*% t(F)
  X = matrix(rpois(n*p, Lam), nrow = n)
  Y = matrix(rpois(n*p, Lam), nrow = n)
  return(list(params = params,Lam = Lam,X = X, Y = Y))
}
n = 100
p = 200
K = 3
params = list(al = 100, bl =  109, af = 100, bf = 100, a = 1)
sim = simulate_data(n, p, K, params, seed =  1234)

maxiter = 100

rank 1

mle

## MLE
mle_rank1 = NNLM::nnmf(A = sim$X, k = 1, method = "lee", loss = "mkl", max.iter = 1)
lam_mle_rank1 =  mle_rank1$W %*% mle_rank1$H
ll_train_mle_rank1  = sum(dpois(sim$X, lam_mle_rank1, log = T))
ll_val_mle_rank1  = sum(dpois(sim$Y, lam_mle_rank1, log = T))
rmse_mle_rank1 = sqrt(mean((lam_mle_rank1 - sim$Lam)^2))
data.frame(ll_train = ll_train_mle_rank1,  ll_val = ll_val_mle_rank1, rmse = rmse_mle_rank1)
   ll_train    ll_val      rmse
1 -37606.75 -37849.52 0.1978021

ebpmf

## rank 1 case
out_rank1 =  ebpmf::ebpmf_rank1_point_gamma_helper(X = sim$X, maxiter = 10, verbose = T)
[1] "iter         elbo        kl_l         kl_f       sum_El       sum_Ef"
[1] "  1   1525.9978611673  45.3663647810   68.4682771405   55800.5672468702   1.0002757797"
[1] "  2   1525.9978611679  45.3663647784   68.4682771320   55800.6149360006   1.0002749247"
[1] "  3   1525.9978611699  45.3663647734   68.4682770954   55800.6626321327   1.0002740696"
[1] "  4   1525.9978611658  45.3663647798   68.4682771807   55800.7103325295   1.0002732143"
[1] "  5   1525.9978611681  45.3663647760   68.4682771288   55800.7580488383   1.0002723589"
[1] "  6   1525.9978611788  45.3663647769   68.4682768710   55800.8057672442   1.0002715038"
[1] "  7   1525.9978611697  45.3663647797   68.4682770847   55800.8534679000   1.0002706483"
[1] "  8   1525.9978611703  45.3663647790   68.4682770717   55800.9011965519   1.0002697926"
[1] "  9   1525.9978611726  45.3663647734   68.4682770288   55800.9489323133   1.0002689368"
[1] " 10   1525.9978611725  45.3663647772   68.4682770196   55800.9966705828   1.0002680810"
lam_rank1 =  out_rank1$ql$mean  %*% t(out_rank1$qf$mean)
ll_train_rank1  = sum(dpois(sim$X, lam_rank1, log = T))
ll_val_rank1  = sum(dpois(sim$Y, lam_rank1, log = T))
rmse_rank1 = sqrt(mean((lam_rank1 - sim$Lam)^2))
data.frame(ll_train = ll_train_rank1,  ll_val = ll_val_rank1, rmse = rmse_rank1)
   ll_train    ll_val      rmse
1 -37674.75 -37791.54 0.1434967

rank-k:

out =  ebpmf::ebpmf_point_gamma(X = sim$X, K = K, maxiter.out = 100, verbose = F, fix_g = F)

lam_out =  out$qg$qls_mean  %*% t(out$qg$qfs_mean)
ll_train_out  = sum(dpois(sim$X, lam_out, log = T))
ll_val_out  = sum(dpois(sim$Y, lam_out, log = T))
rmse_out = sqrt(mean((lam_out - sim$Lam)^2))

d = length(out$ELBO)
print(sprintf("ELBO monotonically  increasing? %s", all(out$ELBO[1:(d-1)] < out$ELBO[2:d])))
[1] "ELBO monotonically  increasing? TRUE"
plot(out$ELBO)

data.frame(ll_train = ll_train_out,  ll_val = ll_val_out, rmse = rmse_out)
   ll_train    ll_val      rmse
1 -37714.18 -37832.52 0.1671491

mle

mle_rankK = NNLM::nnmf(A = sim$X, init = list(W0 = out$qg$qls_mean, H0 = t(out$qg$qfs_mean)),k = K, method = "lee", loss = "mkl", rel.tol = 1e-10, max.iter = 100)
lam_mle_rankK =  mle_rankK$W %*% mle_rankK$H
ll_train_mle_rankK  = sum(dpois(sim$X, lam_mle_rankK, log = T))
ll_val_mle_rankK  = sum(dpois(sim$Y, lam_mle_rankK, log = T))
rmse_mle_rankK = sqrt(mean((lam_mle_rankK - sim$Lam)^2))
data.frame(ll_train = ll_train_mle_rankK,  ll_val = ll_val_mle_rankK, rmse = rmse_mle_rankK)
   ll_train    ll_val      rmse
1 -36870.87 -38462.89 0.4485559

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] NNLM_0.4.2     ebpmf_0.1.0    testthat_2.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2          compiler_3.5.1      git2r_0.25.2       
 [4] workflowr_1.4.0     prettyunits_1.0.2   remotes_2.1.0      
 [7] tools_3.5.1         digest_0.6.21       pkgbuild_1.0.3     
[10] pkgload_1.0.2       evaluate_0.14       memoise_1.1.0      
[13] rlang_0.4.0         cli_1.1.0           rstudioapi_0.10    
[16] yaml_2.2.0          xfun_0.8            withr_2.1.2        
[19] stringr_1.4.0       knitr_1.25          gtools_3.8.1       
[22] desc_1.2.0          fs_1.3.1            devtools_2.2.1.9000
[25] rprojroot_1.3-2     glue_1.3.1          R6_2.4.0           
[28] processx_3.3.1      rmarkdown_1.13      sessioninfo_1.1.1  
[31] mixsqp_0.1-121      callr_3.2.0         magrittr_1.5       
[34] whisker_0.3-2       backports_1.1.5     ps_1.3.0           
[37] ellipsis_0.3.0      htmltools_0.3.6     usethis_1.5.1      
[40] assertthat_0.2.1    stringi_1.4.3       ebpm_0.0.0.9001    
[43] crayon_1.3.4