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1. Overview. We introduce an Empirical Bayes approach to Poisson Matrix
Factorization (EBPMF), whose key feature is that it uses the observed data to esti-
mate prior distributions on matrix elements. We solve this problem using Variational
Inference, which reduces the fitting of EBPMF to solving “Poisson Means” problem.

The writeup us organized as follows.
* Section 2 introduces notation.

* Section 3 introduces the Empirical Bayes Poisson Mean problem (EBPM)

* Section 4 derives the Maximum Likelihood Estimation for Poisson Matrix
Factorization using Expectation-Maximization (EM), which is the same as
lee’s multiplicative update

* Section 5 introduces the rank-1 version of EBPMF, and shows its connection
to the EBPM problem

* Section 6 introduces the rank-k version of EBPMF, and shows its connection
to the EBPM problem

2. Notation.
* For a 3d tensor Zijk with shape (n, p,K), I use capital character to indicate

a slice along that axis. For example, ZIjk means Z1:n,jk. Similar notation
applies to 2d arrays.

* 〈x〉q := Eq(x)

3. Empirical Bayes Poisson Mean Problem (EBPM). Suppose we have
observations x and scale s, and we assume the following generating process.

xi|λi ∼ Pois(siλi)
λi ∼ g(.)

g ∈ G

Our goal is to find

ĝ := argmaxg `(g) = argmax log p(x|g, s)
p := p(λ|x, ĝ, s)

Suppose we can solve this type of problem, and use EBPM to denote the mapping:

EBPM(x, s) = (p, ĝ)

Remark. The MLE for the Poisson mean problem is λ̂i = xi
si
.

4. MLE for Poisson Matrix Factorization (PMF). Let’s first look at an
algorithm of a related problem - MLE for Poisson Matrix Factorization (PMF):
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Xij ∼ Pois(
∑
k

likfjk)

and we want to find the MLE for L,F . The most popular algorithm is lee’s multi-
plicative update, which is essentially an EM algorithm.

4.1. rank 1 case. We set K = 1. It is easy to see that the optimal li, fj (update
to a scaling factor between l,f) is

li =

∑
j Xij∑
j fj

fj =

∑
iXij∑
i li

Remark. We can see that the optimal l is the MLE solution to the Poisson mean
problem where xi :=

∑
j Xij and si :=

∑
j fj. Similar remark for f .

4.2. rank k case. In EM we use the data augmentation trick which can reduce
solving the rank-k problem to solving rank-1 problems:

Xij =
∑
k

Zijk

Zijk ∼ Pois(likfjk)

In E-step, we compute p(Zijk|Xij , liK , fjK), which gives us 〈Zijk〉p = Xij
likfjk∑
k likfjk

.

In M-step, we update L,F by optimizing E[log p(X,Z|L,F )], which gives us

lik =

∑
j 〈Zijk〉p∑
j fjk

fjk =

∑
i 〈Zijk〉p∑
i lik

Remark. We can expand 〈Zijk〉p and get the famous lee’s multiplicative update,
but this form is more similar to our Poisson Mean problem: each column of the updated
L is the MLE for Poisson Mean problem with xi :=

∑
j 〈Zijk〉p and si :=

∑
j fjk.

Similar remark for F .

5. EBPMF: rank-1. I will solve this problem using Mean-Field Variational
Inference, which can be shown to be equivalent to the EBPM problem. This naturally
provides us with an algorithm to solve EBPMF (rank-1) problem. Then it is also easy
to see the connection between our algorithm and the EM for PMF (rank-1).

5.1. Model.

Xij ∼ Pois(lifj)
li ∼ gL(.), gL ∈ G
fj ∼ gF (.), gF ∈ G

We assume that data is from a Poisson distribution, and the mean is rank-1. We can
impose different priors on elements of l,f .
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Our goal is to find:

ĝL, ĝF := argmax l(gL, gF ) = argmax log p(X|gL, gF )

and posterior of l,f : p(l|X, ĝL, ĝF ), p(f |X, ĝF , ĝF ).

5.2. Variational Inference. The marginal p(X|gL, gF ) is intractable. There-
fore, we use mean-field variational inference, by using approximating distribution
q(l,f) = qL(l)qF (f). Then we have:

log p(X|gL, gF ) = ELBO(qL, qF , gL, gF ) +KL(q(l,f)||p(l,f |X, gL, gF ))

≥ ELBO(qL, qF , gL, gF )

where the evidence lower bound (ELBO) is defined by

ELBO(qL, qF , gL, gF ) := Eq(log p(X, l,f))− Eq(log q(l,f))

= Eq[log p(X|l,f) + log
gL(l)

qL(l)
+ log

gF (f)

qF (f)
]

Now the goal is to maximize ELBO over qL, qF , gL, gF .

5.3. Optimize ELBO by solving EBPM problem. By proposition A.1, we
can see

argmaxqF ,gF ELBO(qL, qF , gL, gF ) = EBPM(
∑
i

Xij , (
∑
i

〈li〉)1)

argmaxqL,gL ELBO(qL, qF , gL, gF ) = EBPM(
∑
j

Xij , (
∑
j

〈fj〉)1)

Next, by observing that in ebpm(x, s1), the estimated prior and approximate
posterior (ĝ, q̂) for sλ is invariant to the value of s, we can see the the equations
above are sufficient and necessary conditions for optimality. Therefore we have the
simple algorithm for ”EBPMF-rank1” this way:

Algorithm 5.1 Alternating Optimization for EBPMF (rank-1)

Result: q̂L, q̂F , ĝL, ĝF
1 Input: X, initial values q

(0)
L , q

(0)
F , g

(0)
L , g

(0)
F

q∗F , g
∗
F ← EBPM(

∑
iXij , (

∑
i 〈li〉q(0)L )1)

q∗L, g
∗
L ← EBPM(

∑
j Xij , (

∑
j 〈fj〉q∗F )1)

Remark. It is clear that both algorithms solve the same Poisson Means problems.
In PMF-MLE we use MLE for the Poisson Means problem; in EBPMF we solve it
with an Empirical Bayes approach instead.

6. EBPMF: rank-k. Like in the rank-k case for PMF-MLE, we introduce hid-
den variable Zijk:

Xij =
∑
k

Zijk

Zijk ∼ Pois(likfjk)

lik ∼ gL,k(.), gL,k ∈ G
fjk ∼ gF,k(.), gF,k ∈ G
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We introduce hidden variable Z so that it is easy to see the connection to ”rank-1”
case. Independent priors for placed for each column of F,L, both for flexible model-
ing, and computational convenience.

6.1. Variational Inference. Similarly, we use factorized varaitional inference:

q(L,F, Z) = qL(L)qF (F )qZ(Z)

qZ(Zij,1:K) = MN(Xij , ζij,1:K)

The optimal parametric family of qL(L), qF (F ) is dependent on the choice of G.

6.2. Reduce rank-k to rank-1. The ELBO for rank-k case is:

ELBO(q, g) = Eq[log p(X,L, F, Z|gL,1:K , gF,1:K)]− Eqlog qL(L)− Eqlog qF (F )− Eqlog qZ(Z)

= Eq{log p(Z|L,F ) + log
gL(L)

qL(L)
+ log

gF (F )

qF (F )
− log qZ(Z)}

= Eq{
∑
ijk

[−likfjk + Zijklog(likfjk)− log(Zijk!)]

+ log
gL(L)

qL(L)
+ log

gF (F )

qF (F )

−
∑
ij

[
∑
k

Zijklog(ζijk) + log(Xij !)−
∑
k

log(Zijk!)]}

=
∑
k

{[
∑
ij

(−〈lik〉q 〈fjk〉q + 〈Zijk〉q 〈log(lik)〉q + 〈log(fjk)〉q)] + Eq(log
gL(LIk)

qL(LIk)
+ log

gF (FJk)

qF (FJk)
)}

−
∑
ijk

〈Zijk〉q log(ζijk)−
∑
ij

log(Xij !)

(6.1)

Remark. In the second equation, X is ignored as
∑
k Zijk = Xij with probability

1 under qZ(.).

Now the last equation tells us how to optimize the ELBO. We separate parame-
ters into two parts (gL, gF , qL, qF ) and qZ , then optimize alternatingly.
If we fix q(Z), The first part is just k ELBOs for rank-1 problem (Xij replaced with
〈Zijk〉q), which we can solve independently.

If we fix the rest and optimize q(Z): we can decompose the problem into np indepen-
dent subproblems, each can be solved analytically (using Lagrange multiplier). The
optimizer w.r.t ζ is:

ζijk ∝ exp(〈ln(lik)〉q + 〈ln(fjk)〉q)∑
k

ζijk = 1

The agorithm is summarized below.
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Algorithm 6.1 Alternating Optimization for EBPMF (rank-k)

Result: q̂L, q̂F , ĝL, ĝF
2 Input: X, initial values q

(0)
L,1:K , q

(0)
F,1:K , g

(0)
L,1:K , g

(0)
F,1:K

t← 1
while not converged do

3 t← t+ 1
for k ← 1 to do

4 q
(t)
L,k, g

(t)
L,k, q

(t)
f,k, g

(t)
F,k = EBPMF-rank1(〈Zijk〉q , q

(t−1)
L,k , g

(t−1)
L,k , q

(t−1)
F,k , g

(t−1)
F,k )

update qZ
5 end

6 end
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Appendices
A. Connecting EBPM problem to EBPM problem.

Proposition A.1.

argmaxqF ,gF ELBO(qL, qF , gL, gF ) = EBPM(
∑
i

Xij , (
∑
i

〈li〉)1)

where 〈li〉q := EqL(li).

Proof. The idea is that LHS is also the ELBO for the RHS. In order to see this,
we define the ELBO for RHS as FPM , then show LHS can be expressed as FPM .

Let’s define

FPM (qλ, g;x, s) := Eq[log p(x|λ, s) + log(
g(λ)

qλ(λ)
)]

=
∑
t

Eq(−stλt + xtlog(stλt)) + Eq(log(
g(λ)

qλ(λ)
))−

∑
t

log(xt!)

By the following lemma, we can see FPM is the ELBO of the RHS:

Lemma A.2.

argmaxqλ,gF
PM (qλ, g;x, s) = EBPM(x, s)

Proof.

`(g) = log p(x|g)

= Eq[log p(x|g)]

= Eq[log
p(x,λ|g)

p(λ|x, g)
]

= Eq[log
p(x,λ|g)

qλ(λ)
+ log

qλ(λ)

p(λ|x, g)
]

= Eq[log p(x|λ) + log
g(λ)

qλ(λ)
] +KL(qλ||pλ|x,g)

= FPM (qλ, g;x, s) +KL(qλ||pλ|x,g)
≥ FPM (qλ, g;x, s)

Then by

FPM (qλ, g) = `(g)−KL(qλ||pλ|x,g)

we know the maximizer (over q) for FPM (qλ, g) is the posterior pλ|x,g, which also
makes KL divergence equal 0. Therefore we have

maxqλ,gF
PM (qλ, g) = maxg`(g)

Then our lemma follows.
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Then we can express ELBO (w.r.t F) in terms of FPM :

ELBO(qF , gF ) = Eq[log p(X|l,f) + log
gL(l)

qL(l)
+ log

gF (f)

qF (f)
]

=
∑
j

Eq[−(
∑
i

〈li〉)fj + (
∑
i

Xij)log fj + log
g(fj)

qF (fj)
] + const

= FPM (qF , gF ;
∑
i

Xij , (
∑
i

〈li〉)1) + const

Therefore, our proposition follows.

B. ELBO computation. We do not need to compute ELBO explicitly in our
algorithm, but it is useful as an indicator of progress for the algorithm.

B.1. rank 1. ELBO for rank-1 is:

ELBO(qL, qF , gL, gF ) := Eq[log p(X|l,f) + log
gL(l)

qL(l)
+ log

gF (f)

qF (f)
]

=
∑
i,j

[−〈li〉q 〈fj〉q +Xij(〈log(li)〉q + 〈log(fj)〉q)]

+ Eq[log
gL(l)

qL(l)
+ log

gF (f)

qF (f)
]−

∑
ij

log(Xij !)

However, we can’t get a closed form expression for the terms

Eq[log
gL(l)

qL(l)
+ log

gF (f)

qF (f)
] = −KL(qL(l)||gL(l))−KL(qF (f)||gF (f))

But fortunately we can use the relationship between ELBO and the corresponding
EBPM problem.
After each update of our algorithm, we have q̂F (.) = p(.|X, ĝF ), thus

FPM (q̂F , ĝF ) = l(ĝF )

and RHS can be easily computed in our EBPM algorithm. Also

FPM (q̂F , ĝF ;
∑
i

Xij ,
∑
i

〈li〉q 1) = Eq[log p(
∑
i

Xij |f ,
∑
i

〈li〉q 1) + log
gF (f)

qF (f)
]−

∑
j

log((
∑
i

Xij)!)

where the first term is easily computable:

Eq[log p(
∑
i

Xij |f ,
∑
i

〈li〉q 1))] =
∑
j

[(
∑
i

〈li〉q) 〈fj〉q + (
∑
i

Xij) 〈log fj〉q]

Thus we can compute Eq[log
gF (f)
qF (f) ] (and similarly Eq[log

gL(l)
qL(l)

]) and plug them in to

get EBPM.

B.2. rank k. Similarly the only hard part is the KL divergence between g, q for
L,F . We can get them from EBPM results. Thus,

for each rank-1 problem, we can compute Eq
gL(LIk)
qL(LIk)

+ log gF (FJk)
qF (FJk)

.

Then we compute
∑
k{[

∑
ij(−〈lik〉q 〈fjk〉q + 〈Zijk〉q 〈log(lik)〉q + 〈log(fjk)〉q)] and
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Eq(log
gL(LIk)
qL(LIk)

+ log gF (FJk)
qF (FJk)

).

Add them up we get ELBO up to a constant (
∑
ij log(Xij !)). Let’s write down the

formula explicitly:

ELBO(q, g) =
∑
k

{[
∑
ij

(−〈lik〉q 〈fjk〉q + 〈Zijk〉q 〈log(lik)〉q + 〈log(fjk)〉q)] + Eq(log
gL(LIk)

qL(LIk)
+ log

gF (FJk)

qF (FJk)
)}

−
∑
ijk

〈Zijk〉q log(ζijk)−
∑
ij

log(Xij !)

=
∑
ijk

[(−〈lik〉q 〈fjk〉q + 〈Zijk〉q (〈log(lik)〉q + 〈log(fjk)〉q − log(ζijk))]

+
∑
ijk

(log
gL(Lik)

qL(Lik)
+ log

gF (Fjk)

qF (Fjk)
)−

∑
ij

log(Xij !)

=
∑
ijk

[(−〈lik〉q 〈fjk〉q +Xijζijk(〈log(lik)〉q + 〈log(fjk)〉q − log(ζijk))]

+
∑
ijk

(log
gL(Lik)

qL(Lik)
+ log

gF (Fjk)

qF (Fjk)
)−

∑
ij

log(Xij !)

=
∑
ijk

(−〈lik〉q 〈fjk〉q +Xij log (
∑
k

exp(〈log(lik)〉q + 〈log(fjk)〉q))

+
∑
ijk

(log
gL(Lik)

qL(Lik)
+ log

gF (Fjk)

qF (Fjk)
)−

∑
ij

log(Xij !)
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