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1. Overview. Here we want to solve the Empirical Bayes Poisson Means (EBPM)
problem, a problem analogous to the Empirical Bayes Normal Means problem. We
consider 3 prior families: mixture of gamma prior, spike-and-slab (point gamma)
prior, and beta-gamma prior.

For mixture of gamma prior, spike-and-slab (point gamma) prior, we find the
optimal prior through maximizing marginal log-likelihood, then give the posterior.

For beta-gamma, the marginal log-likelihood is not closed form. So we use Mean-
Field Variational Inference and get prior and approximate posterior by maximizing
Evidence Lower BOund (ELBO).

The algorithms are implemented in the R package: ebpm.

2. EBPM Model. Suppose we have observations x and scale s, and we assume
the following generating process.

xi|λi ∼ Pois(siλi)
λi ∼ g(.)

g ∈ G

Our goal is to find ĝ, p where

ĝ := argmaxg `(g) = argmaxg log p(x|g, s)
p := p(λ|x, ĝ, s)

Use EBPM to denote the mapping:

EBPM(x, s) = (p, ĝ)

3. Useful Lemmas. Since the prior families considered use gamma as a basic
component, I list some of the useful lemmas regarding Gamma-Poisson mixture.

Lemma 3.1. If λ ∼ Gamma(a, b), then sλ ∼ Gamma(a, b/s)

Lemma 3.2. If x|λ ∼ Pois(λ), and λ ∼ Gamma(a, b), then x ∼ NB(.; size =
a, prob = b

1+b ).

Lemma 3.3. If x|λ ∼ Pois(λ), λ ∼ Gamma(a, b), then λ|x ∼ Gamma(a+ x, b+
1).

4. Mixture of Gamma. The prior is of the form:

g(λ) =
∑
k

πkGamma(λ; ak, bk)

=
∑
k

πk
bakk

Γ(ak)
λak−1e−bkλ

where ak, bk are known (in a grid) and mixture weights, π, are to be estimated.
(
∑
k πk = 1, πk ≥ 0).
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4.1. MLE.

`(π) =
∑
i

log p(xi|π) =
∑
i

log
∑
k

p(zi = k|π)p(xi|zi = k) =
∑
i

log
∑
k

πkp(xi|zi = k)

where zi = k indicates λi ∼ Gamma(ak, bk).

Now let’s look at p(xi|zi = k). Since xi|(zi = k)
d
= xi|λ ∼ Pois(siλ) with λ ∼

Gamma(ak, bk). By Lemma 3.1 and 3.2, we have xi ∼ NB(r = ak, p = bk
si+bk

).
Therefore, we have

`(π) =
∑
i

log
∑
k

πkLik

where

Lik = NB(xi; r = ak, p =
bk

si + bk
)

This problem is convex, and can be solved efficiently by algorithms like mixsqp.

4.2. Posterior Computation. By lemma 3.5, we get:

p(λ|xi,π) ∝ p(xi|λ)g(λ;π)

∝
∑
k

πkNB(xi, ak,
bk

bk + si
)Gamma(λ; ak + xi, bk + si)

∝
∑
k

πkLikGamma(λ; ak + xi, bk + si)

Thus we have

p(λ|xi, π̂) =
∑
k

Π̃ikGamma(λ; ak + xi, bk + si)

where Π̃ik ∝ Likπ̂k,
∑
k Π̃ik = 1.

Posterior mean: E(λ) =
∑
k Π̃ik

xi+ak
si+bk

.

Posterior log mean: E(log λ) =
∑
k Π̃ik(ψ(ak + xi)− log(bk + si)).

5. Spike-and-slab (Point Gamma). The prior family is point gamma: G =
{π0δ0(.) + (1− π0)Gamma(.; a, b) : π ∈ [0, 1], a, b > 0}.

5.1. MLE.

p(x) = π0p(x|λ = 0) + (1− π0)p(x|λ 6= 0)

= π01{x=0} + (1− π0)NB(x; a,
b

b+ s
)

= π0c(a, b) + d(a, b)

where

d(a, b) = NB(x; a,
b

b+ s
)

c(a, b) = 1{x=0} − d(a, b)
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Then

l(π0, a, b) =
∑
i

log{ci(a, b)π0 + di(a, b)}

This can be solved by softwares like nlm in R.

5.2. Posterior computation.

p(λ|x, π0, a, b) ∝ p(x|λ)g(λ, π0, a, b)

= π0.δ(λ)p(x|λ) + (1− π0)Gamma(λ; a, b)p(x|λ)

= π01x=0δ(λ) + (1− π0)NB(x; a,
b

b+ s
)Gamma(λ; a+ x, b+ s)

Thus

p(λ|x, π0, a, b) = π̂0δ(λ) + (1− π̂0)Gamma(λ; a+ x, b+ s)]

where

π̂0 =
π01x=0

π01x=0 + (1− π0)NB(x; a, b
b+s )

Therefore, posterior mean is (1 − π̂0)a+xb+s . The posterior log mean E(log(λ)) is
−∞ if x = 0, and (1− π̂0)(ψ(a+ x)− log(b+ s)) if x 6= 0.

6. Beta-Gamma. In spike-and-slab (point-gamma) prior, optimal π0 is 0, if
all x are nonzero. Also, the point mass at 0 doesn’t have an effect when xi 6= 0, as
likelihood is 0 for λi = 0. To avoid the two issues, we consider a generalization for point
gamma: beta-gamma. For simplicity we only consider the case for si = 1, i = 1...n,
but it is easily generalized to different choices of si, using lemma 3.1.

6.1. Model.

xi ∼ Pois(λi)
λi = pivi

vi ∼ Gamma(α, β)

pi ∼ Beta(a, b)

The marginal loglikelihood is not closed form, so we consider variational inference
below.

6.2. Variational Inference. Introducing latent variable zi, we reparameterize
the model as below:

xi ∼ Bin(zi, pi)

zi|vi ∼ Pois(vi)
vi ∼ Gamma(α, β)

pi ∼ Beta(a, b)
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Then we can write out log likelihood of all variables:

log p(xi, zi, pi, vi) = log(p(xi|zi, pi)p(zi|vi)p(vi)p(pi))
= log(zi!)− log((zi − xi)!)− log(xi!) + (xi + a− 1)log(pi) + (zi + b− xi − 1)log(1− pi)
+ (α+ zi − 1)logvi − (β + 1)vi

+ αlogβ − log(Γ(α))− logB(a, b)

Using Mean-Field Variational Inference, we have the following update rule (as well
the necessary condition for optimizer of ELBO) (hj is the j-th latent variable):

q∗(hj) ∝ E−j log p(x, h)

Apply this we can get the Coordinate Ascent for each q(hj):

q∗(pi) = Beta(.; a+ xi, b+ 〈zi〉q − xi)
q∗(vi) = Gamma(α+ 〈zi〉q , β + 1)

q∗(zi − xi) = Poisson(exp(〈log(1− pi)〉q + 〈log vi〉q))

I will use ãi, b̃i, α̃i, β̃i, µi to denote the variational parameter for a, b, α, β, λ. (Note µi
is for the shifted Poisson).

Now we have the proper parameterization for q, we can write out ELBO in closed
form:

6.3. ELBO in closed form.

ELBO =
∑
i

Eq[log p(xi, zi, pi, vi)− log q(zi, pi, vi)]

=
∑
i

Eq[log p(xi|zi, pi) + log
p(zi|vi)
q(zi)

+ log
p(vi)

q(vi)
+ log

p(pi)

q(qi)
]

=
∑
i

Eq{xilogpi + (zi − xi)log(1− pi)− log(x!)

+ µi − vi + zi(logvi − logµi) + xilogµi

− [(α̃i − αi)logvi − (β̃i − β)vi + α̃ilogβ̃i − αlogβ + logΓ(α)− logΓ(α̃i)]

− [(ãi − a)logpi + (b̃i − b)log(1− pi) + logB(a, b)− logB(ãi, b̃i)]}

Since q is fully factorized and that mean of posterior and posterior-log used here are
all closed form, the ELBO is closed form. We can optimize over prior parameters
Θ := (a, b, α, β) using some available optimization method, like nlm.

6.4. Coordinate Ascent. To maximize ELBO(g, q), we use coordiante ascent:
fixing q, we can find the optimal g using nlm; fixing g, we update q use the update
rules above.
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