EMPIRICAL BAYES POISSON MEAN (EBPM)

ZIHAO WANG

1. Overview. Here we want to solve the Empirical Bayes Poisson Means (EBPM)
problem, a problem analogous to the Empirical Bayes Normal Means problem. We
consider 3 prior families: mixture of gamma prior, spike-and-slab (point gamma)
prior, and beta-gamma prior.

For mixture of gamma prior, spike-and-slab (point gamma) prior, we find the
optimal prior through maximizing marginal log-likelihood, then give the posterior.

For beta-gamma, the marginal log-likelihood is not closed form. So we use Mean-
Field Variational Inference and get prior and approximate posterior by maximizing
Evidence Lower BOund (ELBO).

The algorithms are implemented in the R package: ebpm.

2. EBPM Model. Suppose we have observations x and scale s, and we assume
the following generating process.
x;|A; ~ Pois(s;\;)
Ai~g(.)
geg

Our goal is to find g, p where

g = argmax, {(g) = argmax, log p(z|g, s)
D= p(A|$, g7 S)

Use EBPM to denote the mapping:
EBPM(x,s) = (p,g)

3. Useful Lemmas. Since the prior families considered use gamma as a basic
component, I list some of the useful lemmas regarding Gamma-Poisson mixture.
LEMMA 3.1. If A ~ Gamma(a,b), then s\ ~ Gamma(a,b/s)

LEMMA 3.2. If z|A ~ Pois()), and A ~ Gammal(a,b), then x ~ NB(.;size =
a, prob = ﬁ).

LEMMA 3.3. If 2|\ ~ Pois(\), A ~ Gamma(a,b), then Az ~ Gamma(a + z,b+
1).

4. Mixture of Gamma. The prior is of the form:

g(\) = Zkaamma()\; ay, by)
k
Sy
= k
k I(

where ay, b are known (in a grid) and mixture weights, 7, are to be estimated.
(S = 1,m > 0).
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https://github.com/stephenslab/ebpm

4.1. MLE.
) = Zlog p(x;|mw) = Zlog Zp z; = k|lm)p(a;|z = k) Zlog Z?Tkp xilz = k)

where z; = k indicates \; ~ Gamma(ag, by).
Now let’s look at p(zi|z; = k). Since z;|(z = k) 4 i|A ~ Pois(s;A) with A ~
Gamma(ag,b;). By Lemma 3.1 and 3.2, we have 2; ~ NB(r = ag,p =

Therefore, we have
= Y tog Y
i k

Si+kbk )

where
b,
8; + by

Lix = NB(zy;r = ag,p = )

This problem is convex, and can be solved efficiently by algorithms like mixsqp.

4.2. Posterior Computation. By lemma 3.5, we get:
p(Alzi, m) o p(zi|A\)g(A; )

x ZwkNB (4, a, ——— ) Gamma(X; ar + x;, b, + S;)

. by + s;
o Z 7 LigGamma(\; ax, + i, by, + ;)
k

Thus we have

(A, &) = Z l:[ikGamma(/\; ar + i, by + 8;)
k

where ﬁik o szfrk, Zk ]-:Izk =1.
Posterior mean: E(\) =3, II; ?ig}’;
Posterior log mean: E(log A) = Y, ILix(¥(ar + x;) — log(bi + ;).

5. Spike-and-slab (Point Gamma). The prior family is point gamma: G =
{m0do(.) + (1 — m9)Gamma(.;a,b) : w € [0,1],a,b > 0}.

5.1. MLE.
p(x) = mop(z|A = 0) + (1 — mo)p(z|A # 0)
b
= mol{z=0y + (1 — mo) NB(x;a, m)
= moc(a,b) + d(a,b)
where

d(a, b) = ,Z\[.B(.T7 a, m)
C(a’a b) = 1{1:0} - d(a’a b)
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Then

I(mo,a,b) = Z log{ci(a,b)mo + d;(a,b)}

This can be solved by softwares like nlm in R.

5.2. Posterior computation.

p(>\|$, o, a, b) & p(x‘)‘)g()‘v o, Q, b)
= m.0(A)p(z|A) + (1 — o) Gamma(A; a, b)p(z|\)

= molyz=00(A) + (1 — mo) NB(z; a, H%)Gamma()\; a+xz,b+s)

Thus

p(A|x, mo,a,b) = 7d(A) + (1 — 7p)Gamma(X;a + x,b + )]

where

mole=0
mola=0 + (1 — o) NB(x; a, 52)

mn =

Therefore, posterior mean is (1 — ﬁo)‘ZIi- The posterior log mean E(log(X)) is
—oo if 2 =0, and (1 — 7o) (¥(a +x) — log(b+s)) if  # 0.

6. Beta-Gamma. In spike-and-slab (point-gamma) prior, optimal 7o is 0, if
all x are nonzero. Also, the point mass at 0 doesn’t have an effect when z; # 0, as
likelihood is 0 for A\; = 0. To avoid the two issues, we consider a generalization for point
gamma: beta-gamma. For simplicity we only consider the case for s; = 1,7 = 1...n,
but it is easily generalized to different choices of s;, using lemma 3.1.

6.1. Model.

x; ~ Pois(\;)

Ai = pivi

v; ~ Gamma(a, B)
p; ~ Beta(a,b)

The marginal loglikelihood is not closed form, so we consider variational inference
below.

6.2. Variational Inference. Introducing latent variable z;, we reparameterize
the model as below:

x; ~ Bin(zi, p;)
zi|v; ~ Pois(v;)
v; ~ Gamma(ao, B)

p; ~ Beta(a,b)
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Then we can write out log likelihood of all variables:

log p(wi, zi, pi, vi) = log(p(xil2i, pi)p(2i|vi)p(vi)p(pi))
=log(z;!) — log((z; — x;)!) — log(z;!) + (x; + a — 1)log(p;) + (zi + b — x; — 1)log(1 — p;)
+ (a+ z; — Dlogv; — (B+ 1),
+ alogB — log(T'(«)) — logB(a,b)

Using Mean-Field Variational Inference, we have the following update rule (as well
the necessary condition for optimizer of ELBO) (h; is the j-th latent variable):

q*(h;) o< E_jlog p(x,h)
Apply this we can get the Coordinate Ascent for each g(h;):
q"(pi) = Beta(.;a + ;b + (2;),, — @)
e e
q"(2i — xi) = Poisson(exp({log(1 — p;)), + (log vi),))

I will use a;, l~)i, a;, Bl-, ;i to denote the variational parameter for a,b, o, 8, A. (Note p;
is for the shifted Poisson).

Now we have the proper parameterization for ¢, we can write out ELBO in closed
form:

6.3. ELBO in closed form.
ELBO = Z Eqyllog p(zi, zi, pisvi) — log q(zi, pi, vi)]

(2

DP(Zi|V; Vg
:ZEq[ZOQP($i|thi>+lOQ (ailvi) (_)

Z a0 (v2)
= Z E{zilogp; + (z; — zi)log(1 — p;) — log(a!)

(pz)]
(a:)

+logp —l—logp
q q

+ pi — v; + zi(logv; — logpi) + xilogp;

— [(&; — avg)logv; — (B; — B)v; + dulogB; — alogB + logT(a) — logT'(é;)]

— [(d@; — a)logp; + (b; — b)log(1 — p;) + logB(a, b) — logB(as, b;)]}
Since ¢ is fully factorized and that mean of posterior and posterior-log used here are

all closed form, the ELBO is closed form. We can optimize over prior parameters
O := (a,b, a, B) using some available optimization method, like nlm.

6.4. Coordinate Ascent. To maximize ELBO(g, q), we use coordiante ascent:
fixing ¢, we can find the optimal g using nlm; fixing g, we update ¢ use the update
rules above.
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